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ABSTRACT  

Background 

Microbiome studies are often limited by a lack of statistical power due to small sample sizes and 

a large number of features. This problem is exacerbated in correlative studies of multi-omic 

datasets. Statistical power can be increased by finding and summarizing modules of correlated 

observations. Additionally, modules provide biological insight as groups of microbes can have 

relationships among themselves. 

Results 

To address these challenges we developed SCNIC: Sparse Cooccurrence Network Investigation 

for Compositional data. SCNIC is open-source software that can generate correlation networks 

and detect and summarize modules of highly correlated features. We applied SCNIC to a 

published dataset comparing microbiome composition in men who have sex with men (MSM) 

who were at a high risk of contracting HIV to non-MSM. By applying SCNIC we achieved 

increased statistical power and identified microbes that not only differed with MSM-status, but 

also correlated strongly with each other, suggesting shared environmental drivers or cooperative 

relationships among them.  

Conclusions 

SCNIC provides an easy way to generate correlation networks, identify modules of correlated 

features and summarize them for downstream statistical analysis. Although SCNIC was designed 

considering properties of microbiome data, such as compositionality, it can be applied to a 

variety of data types including metabolomics data and used to integrate multiple data types. 

Using SCNIC allows for the identification of functional microbial relationships at scale while 

increasing statistical power. 
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BACKGROUND  

Microbial communities play important roles in environmental and human health systems 

and can often reach great complexity. In these rich ecosystems, microbes interact with each 

other, forming relationships based on predator prey dynamics [1] , competition for resources 

[2] ,cross-feeding of small compounds [3]  and other factors. Identifying correlated pairs of 

microbes can suggest potential interactions or shared environmental preferences. Accordingly, 

studies have identified complex networks of co-occurring microbes in a variety of different 

environments ranging from the human mouth and gut [4]  to soil [5]  and stream ecosystems [6] . 

To detect correlations between microbes a variety of methods have been developed. 

While traditional correlation metrics are used by some [7–9] , newer methods have been 

developed that take into account the properties of 16S rRNA sequencing data [10–12] . A recent 

review tested these methods on a variety of models and identified some methods that performed 

better than others in ways that can depend on underlying data characteristics [13] . Although 

these tools are useful for finding pairwise relationships between organisms, less attention has 

been given toward developing methods for finding correlations among groups of microbes. 

One way to explore complex interactions is to form networks in which correlated 

organisms are joined with an edge, and highly correlated sets of microbes are defined, which we 

will refer to here as modules. There are two primary benefits of finding groups of correlated 

microbes. First, the combination of microbes in a module could be further explored to understand 

microbial interactions, such as cross-feeding relationships, or shared environmental niches 

[5,14–16] . Second, considering correlation structure among microbes can aid in statistical 

analysis aimed at uncovering relationships between microbes and other environmental factors. 

Specifically, by eliminating or summarizing highly correlated features, dependence between 
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features is decreased which will increase accuracy of methods that assume the independence of 

features such as false discovery rate technique (FDR) measurement [17] , and statistical power is 

increased by reducing the number of feature comparisons. 

One workflow for considering groups of correlated microbes in downstream statistical 

analyses requires three steps: First, correlations between microbes must be measured and used to 

form a network. Second, modules must be identified. Third, abundance of the microbes in 

modules must be summarized for use in subsequent statistical analyses. One software tool that 

has implemented this workflow, developed for application to gene expression data, is weighted 

gene correlation network analysis (WGCNA) [18] . WGCNA builds correlation networks based 

on a correlation coefficient (such as Pearson, Spearman, or biweight midcorrelation [19] ), and 

detects modules as subtrees in a hierarchical cluster of features [20] . Modules are summarized by 

setting module abundance to that of network hubs or an eigenvector of the abundance of all 

module members [18] . 

Several groups have used WGCNA to analyze 16S rRNA sequencing data [21–24] , but 

this approach may not be appropriate for several reasons [25] . First, the correlation metrics 

implemented in WGCNA do not account for compositionality. Only relative abundance of taxa is 

collected instead of true taxa abundance and this can lead to the detection of spurious 

correlations [26] . Second, the primary method WGCNA uses to pick modules assumes the 

correlation network will have a scale-free topology that may not be relevant to microbiome data 

[27] . Third, summarizing modules through identifying hub taxa works well in gene expression 

where a single transcription factor can control the expression of many genes, but may not be 

appropriate in microbial communities. Both the hub and eigenvector approaches to module 

summarization do not allow for output tables that maintain the total counts of microbial 
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abundance per sample and so cannot be used with tools developed for microbiome data analysis 

that make assumptions based on total sample counts such as ANCOM [28]  or metagenomeSeq 

[29] . 

Optimal methods for identifying and summarizing modules of correlated features in 16S 

rRNA sequencing data have not been deeply explored. One study [25]  recommended an 

ensemble approach for correlation detection [13] , and the Louvain modularity maximization 

(LMM) method [30]  to identify modules [31] . LULU is a tool that follows a binning approach 

towards OTUs that co-occur, but only does so if they’re highly phylogenetically related [32] . 

Another tool, CoNet, uses an ensemble approach to build and visualize networks [33] . However, 

no implementation of module summarization was made available for downstream statistical 

analysis. 

To address these concerns, we have developed a tool for sparse, compositional 

correlation network investigation for compositional data (SCNIC), which uses methods 

optimized for microbiome data analysis. SCNIC is available as standalone Python software, via 

Bioconda [34]  and the Python package index (pip), and as a QIIME 2 plugin [35] . The source 

code for SCNIC and the QIIME 2 plugin is freely available on GitHub 

( https://github.com/lozuponelab/SCNIC, https://github.com/lozuponelab/q2-SCNIC) under the 

BSD-3-Clause License. 

 

MATERIALS AND METHODS 

The SCNIC method 

SCNIC takes a feature table containing counts of each feature in all samples as input and 

performs three steps: 1) a correlation network is built, 2) modules are detected in the network 
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and 3) feature counts within a module are summed into a new single feature (identified as 

“module-x” where x is numbered consecutively starting at zero) (Figure 1). To summarize 

modules, SCNIC uses a sum of count data from all features in a module. The newly generated 

modules are included in a new feature table alongside all features not grouped into a module. 

Maintaining the total counts per sample allows for downstream analyses with tools that have 

assumptions related to total sample counts. SCNIC produces a graph modeling language (GML) 

format [36]  file compatible with Cytoscape [37]  for network visualization in which the edges in 

the correlation network represent the positive correlations which are stronger than a user 

specified R-value cutoff (between 0 and 1), a file describing which features compose each 

defined module, and a feature table in the Biological Observation Matrix (BIOM) format 

(McDonald et al., 2012) (Figure 1).  

SCNIC allows users to choose between multiple methods for detecting correlations and 

of defining modules of co-occurring microbes. For correlations, in addition to implementing 

traditional correlation metrics (including Pearson’s r , Spearman’s ⍴  and Kendall’s 𝜏), SCNIC 

also invokes SparCC [39,40]  to correct for compositionality in microbiome data. SparCC has 

been shown to perform well in detecting correlations compared to other correlation measures 

[13] , in communities with an inverse Simpson index above 13 [39,40]  as so was chosen as the 

default metric. To define modules of co-correlated features, we implement two methods: 1) 

Louvain modularity maximization (LMM) and 2) a novel shared minimum distance (SMD) 

module detection algorithm; unlike WGCNA, neither of these algorithms make assumptions 

about network topology. LMM was previously proposed as a method for clustering correlation 

networks of microbes into modules [30] . LMM works by first assigning one module per feature. 

Each pair of adjacent modules are joined and the change in modularity (defined by the number of 
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edges within the module compared to outside) is calculated for each module. The pair which 

increases the mean modularity of the network the most is then joined. This process is repeated 

until the modularity of the network is not increased. LMM uses two parameters provided by the 

use: The first parameter, R-value, defines the minimum correlation coefficient for defining an 

edge between features. The second parameter, gamma, controls the size of modules detected, 

with large gamma values yielding larger modules. WGCNA and LMM have a potential 

weakness in that modules can contain pairs of taxa that are not strongly correlated (e.g. if they 

are several steps away from each other in the network). To address this weakness we also 

implement the SMD method to ensure that correlations between all pairs of features in the 

module have an R-value greater than the user provided minimum. Specifically, the SMD method 

defines modules by first applying complete linkage hierarchical clustering to correlation 

coefficients to make a tree of features. Next, SMD defines modules as subtrees where 

correlations between all pairs of tips have an R-value above the specified value. SMD has been 

set as the default method in SCNIC because of the desirable property of only producing modules 

where all features are correlated over a user-specified threshold.  

A large proportion of microbiome studies sample highly uneven communities which 

leads to strong compositionality-driven artifacts [26,41,42] . Because of this, we use SparCC, 

specifically the implementation of FastSpar [40] , as the default correlation measure. SparCC was 

used as the correlation metric based on analysis that suggested a high precision in the number of 

correct edges recovered when correlations calculated in synthetic data [13] . SCNIC additionally 

includes the option of using Pearson’s r, Spearman’s ⍴  and Kendall’s 𝛕  to evaluate 

non-compositional or dense data types. 
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Demonstrating the use of SCNIC  

We demonstrate the use of SCNIC with a study that used 16S rRNA sequencing of fecal 

material to compare microbiome composition in individuals with and without HIV and in men 

who have sex with men (MSM) who were at a high risk of contracting HIV [43] . The 

Noguera-Julian et al. data set was retrieved from NCBI SRA accession number SRP068240, and 

samples from the BCN0 cohort were used for these analyses. Reads were error corrected, quality 

trimmed, and primers were removed using default parameters in BBTools [44] . DADA2 was 

used to find amplicon sequence variants (ASVs) with reads trimmed from the left by 30 base 

pairs and truncated at 269. ASVs were binned into operational taxonomic units (OTUs) using 

USEARCH [45]  at 99% identity via QIIME 1 [46] . A phylogenetic tree was made using a single 

representative sequence from each OTU and the SEPP protocol [47,48]  via QIIME 2 [35]  for the 

99% OTUs. We evaluated the average phylogenetic distance between OTUs in the same module 

using the distance  method of Biopython [49,50] . Taxonomy was assigned using the Naive Bayes 

QIIME 2 feature classifier, version gg-13-8-99-515-806-nb-classifier.qza.  

The original study describing these data showed a strong divergence in gut microbiome 

composition in MSM compared to non-MSM independent of HIV status and more subtle 

differences associated with HIV when controlling for MSM behavior. The goal of our analysis 

was to evaluate whether comparing gut microbiome composition between HIV negative MSM 

and non-MSM with SCNIC modules provide additional significant taxa compared to without, 

and additional insights as to which taxa that differ with MSM also are in turn demonstrating 

co-correlated structure with each other, indicating that they may be a part of a broader 

community type, interact with each other, or have shared environmental drivers of their 

prevalence. A further goal of this analysis is to examine the effects of using different R-value 
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thresholds on the results. The SMD method was specifically used with SparCC R-value 

thresholds between 0.20 and 1.0, with 0.05 increments. 

 

Evaluating effects of applying SCNIC to discern microbes that differ with MSM status 

OTUs/modules that differed with MSM were identified using ANCOM [28]  for each 

feature. We chose ANCOM because it is also a tool designed specifically for working with 

compositional microbiome data. ANCOM was applied to the original feature table where SCNIC 

was not applied, as well as to feature tables output from SCNIC using SparCC at different R 

value thresholds with the SMD algorithm. To focus on evaluating differences in the microbiome 

between MSM and non-MSM without confounding by HIV infection status, we only used 

samples from HIV negative individuals.  

While applying SparCC, SCNIC uses the recommended practice of the SparCC 

manuscript of filtering based on average relative abundance across samples [39] . The SparCC 

manuscript suggests this filter because removing features with high abundances, even in a few 

samples, will upset the ability of the method to control for the number of reads per sample in its 

compositionality adjustment. Because this method can retain OTUs that are highly abundant in 

only a single sample, we removed features that had 0 values in more than 20% (~ 29/146) of 

samples before applying ANCOM but after applying SparCC. Significant differences with MSM 

status were determined as those above the W value threshold determined by ANCOM. 
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RESULTS 

R-value thresholds influence module size and phylogenetic relatedness of OTUs binned into a 

module 

A key parameter to set when running SCNIC is the R value threshold to use when picking 

modules. Use of a high R-value threshold would be expected to bin only very tightly correlated 

microbes with strong relationships while less stringent thresholds may identify community-level 

patterns representing more loosely connected microbial pairs. To illustrate this concept, we 

binned OTUs into modules using the SMD method at R-value thresholds between 0.2 and 1.0. 

As expected, at lower R-value thresholds, more OTUs were binned into modules and lower 

numbers of modules of smaller average size were formed as the threshold increased (Figure 2). 

To illustrate the effects of R values thresholds on the nature of the identified modules, we 

compare SCNIC outputs using R-value thresholds of 0.2, 0.4, and 0.65 (Figure 3). As shown in 

Figure 3 which visualizes modules in Cytoscape using SCNIC output files, the R value threshold 

influences the size and connectivity of the network. We also illustrate the effect of using 

different thresholds by examining the correlations between OTUs that are included in the first 

module output by SCNIC, module-0 (Figure 4). SCNIC orders its modules by size, with the first 

modules being the largest and the last modules being the smallest. All of the OTUs in module-0 

are positively correlated with each other, since SCNIC only captures positive correlations. 

Microbes co-occurring in the same environmental niche have previously been observed 

to be phylogenetically closer on average [4] . This is likely because phylogenetic relatedness has 

been correlated with functional relatedness, such as through having more shared genome content, 

leading towards success in similar environments [51] . We show that increasing the R-value 
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threshold results in modules that contain OTUs that are more phylogenetically similar on average 

(Figure 4).  

 

Use of SCNIC results in the detection of novel MSM associated taxa 

We next evaluated the effects of applying SCNIC with default SparCC and SMD 

parameters and varying R value thresholds on downstream statistical analysis results. To 

investigate differential abundance based on MSM status in the Noguera-Julian et al. dataset, we 

use ANCOM [28] . We found that 12 OTUs were significantly different between MSM and 

non-MSM without using SCNIC using ANCOM (Table 1). Using SCNIC at R-values of 0.2, 0.5, 

and 0.65 and running ANCOM on the filtered output OTU table, we found that most significant 

features were modules (Table 1), which is interesting because the vast majority of OTUs were 

not a part of modules (Figure 2). The majority of 12 of the OTUs that were significant without 

running SCNIC, were grouped into modules with each other and with OTUs that were not 

individually significant without running SCNIC (Table 1). These significant modules contained 

74, 26, and 1 new OTU at R-values of 0.2, 0.4 and 0.65 respectively. Using SCNIC also resulted 

in the identification of 1, 5 and 25 (at R-values of 0.2, 0.4 and 0.65) OTUs that were individually 

significant that were not significant without running SCNIC, indicating an increase in statistical 

power resulting from running a test like ANCOM that controls the FDR. 

Considering correlation structure of significant features can help in understanding the 

broader community context of bacteria that differ with MSM status. In module-0 for each of the 

R-values Prevotella , which significantly differed by MSM status in all cases, was the dominant 

genus. At an R-value of 0.65, all of the OTUs in the module were assigned to the genus 

Prevotella. However, at an R-value of 0.4 the module included seven Prevotella  OTUs, one 
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Dialister, and an unidentified member of the Bacteroidetes phylum. At the R-value of 0.2, 

Prevotella accounted for 13 of the 25 OTUs and 11 of the 12 Pre-SCNIC significant OTUs were 

all found in this module. This suggests that individual OTUs that differ with MSM status may in 

some cases be a part of a consortium of diverse members that collectively display features that 

may contribute to differences in microbiome function. 

To further explore this concept, we investigated the results generated with an R-value of 

0.4, as the significant features maintain a strong level of correlation while being phylogenetically 

diverse. When running ANCOM on this feature table, we found that these individually 

significant OTUs tended to be joined into modules with other highly co-correlated microbes and 

that these modules significantly differed with MSM (Figure 5). Of particular note, we observe 

that the modules and taxa that are significantly related to MSM do not all correlate with each 

other. At the R-value of 0.4, module-36  contains two taxa, Erysipelotrichaceae and Clostridium 

that are negatively correlated with the other significant taxa and modules (Figure 5). Module-2 

contains Eubacterium, Catenibacterium and Prevotella which are phylogenetically heterogenous 

but mutually co-occurring. A follow up experiment, which leverages insights that SCNIC 

generates, may combine different strains of microbes to assemble a community type to test for 

functional correlates of disease. 

 

DISCUSSION 

SCNIC provides a method to measure correlations, find and visualize modules of 

correlated features, and summarize modules by summing their counts for use in downstream 

statistical analysis. Using SCNIC with the SMD algorithm for module detection aids in 

dimensionality reduction in 16S rRNA sequencing data while ensuring a minimum strength of 
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association within modules. As expected, our workflow identified modules in which OTUs 

tended to be phylogenetically related, especially at relatively high values of R. Using SCNIC, we 

are able to detect previously insignificant features by grouping them into modules which are 

significant. In this analysis, we used OTUs as features however, other microbiome features can 

be used with SCNIC, such as ASVs, genera or species defined with a taxonomic classifier, as 

well as other data types such as metabolome data.  

SCNIC complements existing methods because these either: 1) form correlation networks 

of microbes for visualization but do not have functionality for selecting and summarizing 

modules for downstread statistical analysis [33] , 2) can select and summarize modules for 

downstream statistical analysis but are designed for gene expression and not microbiome data 

[18] , only summarize features if they are phylogenetically related [32] , or suggest methods for 

finding modules of correlated microbes but do not provide a convenient implementation [30] . 

SCNIC is available both as a stand-alone application and as a QIIME2 plugin for easy 

integration with existing microbiome workflows. 

We illustrate here that varying the R-value threshold input by the user has a great impact 

on the results. However, we have avoided giving specific R-value threshold recommendations 

here, because optimal R-values may vary across datasets and data types. Using higher R-values 

thresholds was more likely to identify highly phylogenetically related microbes that likely share 

overlapping functionality, and in principle could also identify diverse organisms with 

overlapping niches or highly complementary metabolic functions. Using a lower R-value 

threshold bins a broader community of more loosely correlated features with the risk of bringing 

together features which should not be grouped. By summarizing correlated features, SCNIC 

mitigates overcorrection in multiple test adjustments by reducing the number of taxa and false 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.380733doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?rTH6xA
https://www.zotero.org/google-docs/?c5utHk
https://www.zotero.org/google-docs/?wMOJAe
https://www.zotero.org/google-docs/?PTOf7U
https://doi.org/10.1101/2020.11.13.380733


discovery rate for downstream analysis. When these organisms are grouped into a broader 

module that is truly independent from other modules, any penalties on two highly similar 

features may be avoided in statistical analysis.  

The results of our analysis of the Noguera-Julian et al (2016) data set yielded findings 

that not only confirm what was found in their original analysis as well as another study [52] , but 

included many new significantly associated taxa. At differing R-values of 0.2, 0.4 and 0.65 there 

were 74, 26 and 1 new OTU that were included in significant modules that were not individually 

significant. Additionally, at R-values of 0.2, 0.4 and 0.65 there were 1, 5 and 25 OTUs that 

became individually significant (Table 1). This primary result describes the many strong 

microbial associations with MSM status. The associations in the Noguera-Julian et al. study are 

done at the genus level which obscures some of the complexity in the data.  

SCNIC assists in interpretation of microbiome data by finding new significant features 

and investigating correlations among these features. At an R-value of 0.2, 13 were of the 

Prevotella in significant modules and 1 was individually significant, while 3 OTUs of the 

Bacteroides  genus were in significant modules. At 0.4, 12 were of the Prevotella genus in 

significant modules and 2 were individually significant while 1, respectively, were of the 

Bacteroides  genus in a significant module. At the R-value of 0.65, 1 was of Prevotella genus 

through significant modules and 10 were individually significant while 1 was of the Bacteroides 

genus that was individually significant. Several previous HIV microbiome studies all found these 

genera most associated strongly with MSM status [43,52–54] . In module-0 , which was more 

abundant in MSM samples, Prevotella  species are correlated with two OTUs identified as 

Eubacterium biforme (which has recently been renamed Holdemanella biformis  [55] ). Prevotella 

copri has previously been associated with increased inflammation [53]  while in vitro 
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stimulations of human immune cells have found that P. copri did not induce particularly high 

levels of inflammation but E. biforme  did [54] . This strong correlation between P. copri and E. 

biforme in MSM could explain the increased inflammation seen in individuals with higher levels 

of P. copri, with E. biforme being the true driver. Indeed MSM status has previously been 

associated with increased inflammation [56,57] . With the use of SCNIC, this correlation 

highlighted a route of mechanistic understanding which could be functionally followed up on in 

further experimental studies. 

SCNIC detected multiple significant modules, of which none of the OTUs within were 

significant when analyzed separately. Module-20 , which was associated with MSM status, is the 

fourth most significant feature at R-value of 0.2, and is made up of Acidaminococcus , 

Megasphaera , and Mitsuokella  species. These are all from the Veillonellaceae family which is 

likely the explanation to their correlation. Members of the Veillonellaceae family have been 

linked with inflammation [58] .   

By increasing statistical power and providing context for the relationships between 

significant taxa, SCNIC modules open new opportunities for analysis. When a module is 

associated with a variable of interest, the correlations within the module may imply functional 

relationships. These can be further investigated with in vitro  and in vivo  experiments. Studies 

which aim to test hypotheses generated commonly will use culture or gnotobiotic mouse studies 

to test the effects of single significantly associated microbes on a condition. These studies do not 

adequately represent in vivo systems because microbes in isolation often do not affect a disease 

state or their environment. SCNIC can enhance these confirmatory studies by identifying groups 

of microbes that may grow better than individual microbes and may better elicit relevant 

phenotypes than when grown separately. 
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Figure 1 SCNIC Schematic and Data Flow 

A. The basic process of SCNIC involves first identifying pairwise correlations between species 
and using them to build a correlation network. Modules of correlated features are identified and 
then summarized so that there is a decrease in the total number of features. Resulting modules 
are then summarized for downstream statistical analysis, or multi-omic analysis between 
modules of microbes and other feature types. B. The input to SCNIC comes in the form of a 
count table in BIOM format. The first step takes the table and generates a correlation table and 
network. The table is in a tab separated format and the network is in GML format and can be 
used to visualize the network in Cytoscape. Modules are detected and summarized in the final 
step which generates a module membership file indicating which features are in each module. 
The collapsed BIOM table contains the same total counts per sample as the original table, but 
with less features. All features not included in modules are retained with their original counts and 
all modules have a total count per sample of the sum of all counts of all features in that module.  
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Figure 2 SCNIC Feature Reduction 

We used SCNIC to select modules using the same OTU table, the SMD module selection 
algorithm, and SparCC R-values ranging from 0.2 to 1.0, in increments of 0.05. The R-Value is 
plotted against the number of features in the resulting BIOM table produced by SCNIC. As the 
R-value increases the number of modules decreases and the number of single features (modules 
+ OTUs not included in modules) increases. After the R-value of 0.65, the number of features in 
the resulting file remained the same at 4351 features which was the same size as the input OTU 
table, because there were no modules that were created past a SparCC R of 0.65. 
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Figure 3 Visualization of SCNIC Networks 

The Cytoscape output allows for easy exploration and visualization of relationships between 
different OTUS/taxa in an interactive interface. A) R = 0.65 B) R = 0.4 C) R = 0.2. As the 
R-value increases, the size of the network decreases as SCNIC does not include singletons 
(features with no significant positive correlations) in the resulting network file. Correlation 
network where edges are correlations with a R value greater than the threshold set. Nodes are 
OTUs and node color represents module membership (i.e. module-0 is pink in Panel A).  
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Figure 4 Module-0  Across Different R-Values 

 
Module-0  expanded to view taxonomy and correlations amongst them at R-values of 0.2 (A), 0.4 
(B), and 0.65 (C). As the R-value increases, the species in module-0 become more 
phylogenetically similar. Module-0 has 11, 5 and 2 of the significant Pre-SCNIC OTUs at 
R-values of 0.2, 0.4 and 0.65, and are highlighted in a yellow border.  
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Figure 5 All Significant Features at R-value 0.4 Found by ANCOM 

Each of the borders in the y-axis represents the different modules, with the module number 
bolded. The Pre-SCNIC OTUs that were significant are highlighted in a yellow border. The 
heatmap in the lower triangle corresponds to the correlation found by SparCC. The heatmap in 
the upper triangle represents the phylogenetic distance between organism pairs. The negative 
correlations in the lower triangle correspond to OTUs in relation to one another. However by 
design, no module contains any taxa that are negatively correlated with each other. 
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Table 1 Significant SCNIC Modules and Features Across R-Values with  

The ANCOM analysis of SCNIC with MSM as the categorical variable for differential 
abundance. Before running SCNIC, there were 12 OTUs found to be significant. Each R-value 
we tested yielded new OTUs in modules that were found significant, with the largest number of 
OTUs at R-value of 0.2. As the R-value increases, the ratio of number of significant modules to 
the number of significant features decreases. 

 

R-Value New OTUs in Significant Modules New Significant OTUs Lost Significant OTUs 

0.2 74 1 0 

0.4 26 5 0 

0.65 1 25 0 

R-Value Number of Significant Modules Total Significant Features 

0.2 14 15 

0.4 11 17 

0.65 2 35 
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