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Abstract

such as diet or the environment.

enzymes in KEGG pathway maps.
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Background: Untargeted metabolomics of host-associated samples has yielded insights into mechanisms by which
microbes modulate health. However, data interpretation is challenged by the complexity of origins of the small
molecules measured, which can come from the host, microbes that live within the host, or from other exposures

Results: We address this challenge through development of AMON: Annotation of Metabolite Origins via Networks.
AMON is an open-source bioinformatics application that can be used to annotate which compounds in the
metabolome could have been produced by bacteria present or the host, to evaluate pathway enrichment of host
verses microbial metabolites, and to visualize which compounds may have been produced by host versus microbial

Conclusions: AMON empowers researchers to predict origins of metabolites via genomic information and to
visualize potential host:microbe interplay. Additionally, the evaluation of enrichment of pathway metabolites of host
versus microbial origin gives insight into the metabolic functionality that a microbial community adds to a host:
microbe system. Through integrated analysis of microbiome and metabolome data, mechanistic relationships
between microbial communities and host phenotypes can be better understood.

Background

The host-associated microbiome can influence many
aspects of human health and disease through its
metabolic activity. Examples include host:microbe co-
metabolism of dietary choline/carnitine to Trimethyla-
mine N-oxide (TMAOQO) as a driver of heart disease [1],
microbial production of branched chain amino acids as
a contributor to insulin resistance [2], and microbial
production of 12,13-DiHOME as a driver of CD4" T
cell dysfunction associated with childhood atopy [3]. A
key way of exploring which compounds might mediate
relationships between microbial activity and host
disease is untargeted metabolomics (e.g. mass spec-
trometry) of host materials such as stool, plasma,
urine, or tissues. These analyses result in the detection
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and relative quantitation of hundreds to thousands of
compounds, the sum of which is referred to as a
“metabolome”. Host-associated metabolomes represent
a complex milieu of compounds that can have different
origins, including the diet of the host organism and a
variety of environmental exposures such as pollutants.
In addition, the metabolome contains metabolic
products of these compounds, i.e. metabolites, that can
result from host and/or microbiome metabolism or
co-metabolism [4].

One way to estimate which metabolites in host sam-
ples originate from host versus microbial metabolism is
to use metabolic networks described in databases such
as the Kyoto Encyclopedia of Genes and Genomes
(KEGQ) [5]. These networks capture the relationship be-
tween metabolites, the enzymes that produce them, and
the genomes of organisms (both host and microbial) that
contain genes encoding those enzymes. These networks
thus provide a framework for relating the genes present
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in the host and colonizing bacteria, and the metabolites
present in a sample. Several papers have explored use of
metabolic networks to understand likely products of
microbial metabolism [6—14]. Algorithms that consider
the combined influence of microbial and host metabo-
lism have also been explored [2, 8, 10-12, 15]. Although
these studies together show great promise in this field,
these methods often rely on comprehensive, validated
metabolic models [6, 8, 13, 14], focus only on subsets of
carefully measured metabolites [15], or focus on other
aspects of community ecology such as predicting meta-
bolic interactions [11], limiting their application to relat-
ing complex untargeted metagenomics and metabolomic
datasets [16]. Furthermore, algorithms developed in this
field often do not have a user interface allowing
researchers to apply them to their own data [2, 15, 17].
One exception is the predicted relative metabolic turn-
over (PRMT) scoring metric [16, 18], and MIMOSA [6],
an application that uses PRMT to relate metabolite
levels and predicted microbial metabolic capabilities in
untargeted metabolomes and metagenomes. However,
MIMOSA does not currently evaluate contributions of
host metabolism to metabolite levels.

Here we present a tool for annotation of metabolite
origins via networks (AMON), which uses information
in KEGG to predict whether measured metabolites are
likely to originate from singular organisms or collections
of organisms based on a list of the genes that they
encode. As an example, AMON can be used to predict
whether metabolites may originate from the host versus
from host-associated microbiomes as assessed with 16S
ribosomal RNA (rRNA) gene sequences or shotgun
metagenomics. We demonstrate our tool by applying it
to a dataset from a cohort of HIV positive individuals
and controls in which the stool microbiome was
assessed with 16S rRNA gene sequencing and the
plasma metabolome was assessed with untargeted liquid
chromatography mass spectrometry (LC/MS). We also
illustrate how much information is lost when we only
focus on compounds and genes of known identity/func-
tion, emphasizing the need for complimentary ap-
proaches to general metabolomic database searches for
the identification of microbially produced compounds.

Methods

AMON implementation

AMON is an open source program implemented in py-
thon 3. It is available at https://github.com/lozuponelab/
AMON as well as in the python package index. AMON
takes as input lists of KO (KEGG Orthology) identifiers
that are predicted to be present in different potential
sources (e.g. the metagenome of a host-associated
microbiome or the genome of host organism) and a list
of KEGG compound IDs, such as from an annotated
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metabolome (Fig. 1). Microbiome KO lists can be gener-
ated from 16S rRNA data using PICRUSt [19] or Tax4Fun
[20], or from a shotgun metagenome using annotation
tools such as HUMAnNN [21]. The KOs from any KEGG
organism can be acquired using the extract_ko_genome_
from_organism.py script supplied with AMON, which de-
termines the KOs for a given organism from files retrieved
using the freely available KEGG API (https://www.kegg.jp/
kegg/rest/) or from a user-supplied KEGG FTP file for
those with a KEGG subscription.

The goal of AMON is to determine the compounds
that a set of KEGG KOs can potentially generate. First,
the reactions associated with each KO and formulas
describing substrates and products of each reaction are
retrieved from the KEGG “reactions” file or the KEGG
API. The products of all reactions are the putative set of
compounds that the given KOs could produce. The
KEGG reaction file does not directly define reversibility
of reactions so AMON assumes that the primary
direction of reactions is from the left to the right in the
equations and therefore the compounds on the right side
of the equation are the products. As an example, if the
supplied set of KOs included K00929 (butyrate kinase),
the following formula from the reaction performed by
this enzyme (R01688) would be retrieved: C02527 (Buta-
noyl phosphate) =>C00246 (butyrate). Butyrate would
then be added to the list of compounds that could be
generated by this set of KOs.

AMON produces a table indicating which compounds
could be produced by each of the provided KO sets or
both. For instance if one KO set is from the host and
one from the microbiome, AMON will indicate whether
compounds that were the products of the reactions that
these compounds encoded originated from the micro-
biome KO set only, host KO set only, or both microbial
and host KO sets. A file for input to KEGG mapper
(https://www.genome.jp/kegg/mapper.html) is also pro-
duced, which can be used to overlay this information on
KEGG pathway diagrams. AMON also generates infor-
mation on pathway enrichment in the compounds pro-
duced by the user-supplied gene lists. Specifically, the
pathway assignment of the set of metabolites predicted
to be produced by each input KO list is tested for en-
richment relative to the full set of all compounds in that
pathway using the hypergeometric test. This calculation
is performed for all KEGG pathways that had at least
one metabolite predicted to be produced by the provided
gene sets. Both raw and Benjamini-Hochberg FDR
adjusted p-values are reported. AMON also produces a
summary figure (Venn diagram) illustrating predicted
metabolite origins. A set of example outputs are pro-
vided with the case study (Figs. 2b, 3 and Additional file 2:
Table S2, Additional file 3: Table S3). We have found
run times to typically be less than 1 min if KEGG files
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= KEGG Genome
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» Annotations of MS or
NMR metabolome

metabolite origin in KEGG pathways

Fig. 1 The data flow of AMON. This schematic shows the flow of data through the AMON tool. The required input is a list of KEGG orthology
(KO) identifiers which will be used with the KEGG database to determine the possible metabolites produced. This information is output to the
user along with a pathway enrichment analysis to show functionality in the produced metabolite and a KEGG mapper file for visualization of

KEGG Mapper

Hypergeometric
Test

Bacterial Pathway
Enrichment: Enrichment
of KEGG Pathways with
compounds produced by
microbiome

Host Pathway Enrichment:
Enrichment of KEGG
Pathways with
compounds produced by
host

Venn Diagram of Compound
Origins

are provided. If KEGG files are not provided then run
time is dependent on the length of the provided KO lists
since the KEGG API limits the volume of data down-
loaded in a set period of time.

Case study

We illustrate the utility of AMON using a data set
from the gut microbiome (16S rRNA) and blood me-
tabolome (LC/MS) of HIV positive individuals and
controls. The cohort and the fecal 16S rRNA data were
previously described as part of a larger study of differ-
ences in the fecal microbiome in HIV positive and high
risk populations [22]. These 16S rRNA data are paired
with metabolome data as a part of a study described at
ClinicalTrials.gov (Identifier: NCT02258685). Stool
samples from 59 individuals, of which 37 were HIV
positive and 22 were HIV negative, were collected at
home in a commode specimen collector within 24 h of
the clinic visit during which blood was drawn.

Generation of fecal 16S rRNA data

Stool samples were stored at — 20 °C during transit and
at — 80 °C prior to DNA extraction with the MoBIO kit
and preparation for barcoding sequencing using the
Earth Microbiome Project protocol [23]. The 16S
rRNA gene V4 region of stool microbes was sequenced
using MiSeq (Illumina), denoised using DADA2 [24]
and binned into 99% Operational Taxonomic Units
(OTUs) using UCLUST [25] and the greengenes
database (version 13_8) via QIIME 1.9.1 [26]. We used
PICRUSt [19] to predict a metagenome and AMON to
predict metabolites.

Plasma sample preparation

A modified liquid-liquid extraction protocol was used to
extract hydrophobic and hydrophilic compounds from
the plasma samples [27]. Briefly, 100 pL of plasma spiked
with internal standards underwent a protein crash with
400 uL ice cold methanol. The supernatant was dried
under nitrogen and methyl tert-butyl ether (MTBE) and
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Fig. 2 The results of a case study running AMON with 16S rRNA sequencing data from stool and PICRUSt to predict the metagenome along with
the KEGG human genome and an LC/MS untargeted metabolome. a A flow diagram showing how much data is lost between parts of analyses
at all data levels. b A Venn diagram showing overlaps in compound sets. The red circle shows compounds detected with untargeted LC/MS with
an annotated KEGG compound ID. The green and purple circles show compounds that the metabolic network tells us could have been
produced by the bacteria present in the microbiome and the host respectively
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water were added to extract the hydrophobic and hydro-
philic compounds, respectively. The upper hydrophobic
layer was transferred to a new tube and the lower hydro-
philic layer was re-extracted with MTBE. The upper
hydrophobic layer was combined, dried under nitrogen
and reconstituted in 200 pL of methanol. The hydro-
philic layer was dried under nitrogen, underwent a sec-
ond protein crash with water and ice-cold methanol (1:4
water-methanol). The supernatant was removed, dried
by SpeedVac at 45 °C and reconstituted in 100 pL of 5%
acetonitrile in water. Both fractions were stored at -
80 °C until LCMS analysis.

Liquid chromatography mass spectrometry

The hydrophobic fractions were analyzed using reverse
phase chromatography on an Agilent Technologies
(Santa Clara, CA) 1290 ultra-high precision liquid
chromatography (UHPLC) system on an Agilent Zor-
bax Rapid Resolution HD SB-C18, 1.8um (2.1 x 100
mm) analytical column with an Agilent Zorbax SB-
C18, 1.8pum (2.1 x5mm) guard column. The hydro-
philic fractions were analyzed wusing hydrophilic
interaction liquid chromatography (HILIC) on a 1290
UHPLC system using a Phenomenex Kinetex HILIC,
2.6um (2.1 x 50 mm) analytical column with an Agilent
Zorbax Eclipse Plus C8 5um (2.1 x 12.5 mm) guard col-
umn. The hydrophobic and hydrophilic fractions were
run on Agilent Technologies (Santa Clara, CA) 6520
and 6550 Quadrupole Time of Flight (QTOF) mass
spectrometers, respectively. Both fractions were run in
positive and negative electrospray ionization (ESI)
modes, as previously described [28].

Mass spectrometry data processing

Compound data was extracted using Agilent Technolo-
gies (Santa Clara, CA) Mass Hunter Profinder Version
B.08 (Profinder) software in combination with Agilent
Technologies Mass Profiler Professional Version 14
(MPP) as described previously [28]. Specifically, a Pro-
finder recursive workflow was used to extract com-
pound data from all samples based on abundance
profiles in m/z and retention time (RT) dimensions.
The aqueous positive mode samples were extracted as
follows: RT extraction range 0-14.7 min with noise
peak height filter >2000 counts, ion species: +H, +Na,
+K, +NH4 and charge state maximum of 2. Alignment
tolerance for RT was 0% + 0.3 min with mass 20 ppm +
3 mDa. The ‘Find by Molecule Feature’ (MFE) parame-
ters used were height > 4500 counts and a score of 90.
The ‘Find by Ion’ (Fbl) parameters were height > 3500
for EIC peak integration with post-processing filters
using Abs height 23500 counts and score 50. The
aqueous negative mode samples were extracted as fol-
lows: RT extraction range 0—14.7 min with noise peak
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height filter >1000 counts, ion species: -H, +ClI,
+HCOO, +CH3COO and charge state maximum of 2.
Alignment tolerance for RT was 0% + 0.3 min with
mass 20 ppm + 3 mDa. The MFE parameters used were
height > 3000 counts and a score of 90. The FbI param-
eters were height > 2500 for EIC peak integration with
post-processing filters using Abs height > 2500 counts
and score 50. The lipid positive mode samples were ex-
tracted as follows: RT extraction range 0-10.4 min
with noise peak height filter 2500 counts, ion species:
+H, +Na, +K, +NH4 and charge state maximum of 2.
Alignment tolerance for RT was 0% + 0.25 min with
mass 20 ppm + 2 mDa. The MFE parameters used were
height > 2000 counts and a score of 90. The FbI param-
eters were height > 1500 for EIC peak integration with
post-processing filters using Abs height > 1500 counts
and score 50. The lipid negative mode samples were
extracted as follows: RT extraction range 0-—10.4 min
with noise peak height filter 2300 counts, ion species:
-H, +Cl, +HCOO, +CH3COO and charge state max-
imum of 2. Alignment tolerance for RT was 0% + 0.3
min with mass 20 ppm + 3 mDa. The MFE parameters
used were height > 4500 counts, and score 90. The Fbl
parameters were height > 3500 for EIC peak integration
with post-processing filters using Abs height > 3500
counts and score 50. In all cases we required com-
pounds had to be present in at least 2 sample files. Ex-
tracted data was imported into MPP and the KEGG
database was used to putatively annotate plasma com-
pounds based on exact mass, isotope ratios and iso-
topic distribution with a mass error cutoff of 10 ppm,
whereby the predicted isotope distribution is compared
to actual ion height and a score is generated. This
corresponds to a Metabolomics Standards Initiative
metabolite identification level 3 [29] and a Schymanski
identification level 5 [31]. Although our approach in
some cases output multiple KEGG compounds as pos-
sible “hits,” we selected the compound with the highest
score [29] such that each compound was assigned a
single KEGG compound ID.

Results

We used AMON to relate the stool microbiome (as
assessed with 16S rRNA gene sequencing) to the plasma
metabolome (as assessed with untargeted LC/MS), in a
cohort of HIV positive individuals and HIV-negative
controls. The overall goal of our case study was to use
AMON to determine the degree to which annotated
compounds in the plasma metabolome of our study co-
hort may have been produced by bacteria present in
fecal samples, the host, either (i.e. both are capable of
production), or neither (i.e. neither the human or the
fecal microbiome are predicted to be capable of produ-
cing the observed metabolite).
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We used the 16S rRNA data and PICRUSt to predict
the genome content of the OTUs detected in the fecal
samples. PICRUSt drops OTUs from the analysis that do
not have related reference sequences in the database and
produces an estimate of the nearest sequenced taxon
index (NSTI) which measures how close those sequences
are to sequenced genomes (those more closely related to
genomes have more power to make predictions regard-
ing gene content). Since human gut bacteria are well
represented in genome databases, only 0.7% of total
reads of the detected sequences were dropped on
account of not having a related reference sequence in
the database. Furthermore, the average NSTI across
samples was 0.08, indicating that most OTUs were
highly related to an organism with a sequenced genome.
We applied PICRUSt to the 16S rRNA dataset with only
OTUs present in more than 11 of 59 samples (20%)
included. The 267 remaining OTUs were predicted to
contain 4409 unique KOs using PICRUSt. We used the
KEGG list of KOs in the human genome to represent
human gene content.

We provided these lists of gut microbiome and human
KOs to AMON to produce a list of compounds gener-
ated from the gut microbiome and the human genome.
We also providled AMON with a reaction file down-
loaded from KEGG January of 2015. Of the 4409 unique
KOs that PICRUSt predicted to be present in the gut
microbiome, only 1476 (33.5%) had an associated re-
action in KEGG. Those without associated reactions
may represent orthologous gene groups that do not per-
form metabolic reactions (such as transporters), or that
are known to exist but for which the exact reaction is
unknown, showing gaps in our knowledge (Fig. 2a).
Using information in KEGG, AMON predicted these
KOs to produce 1321 unique compounds via 1926
unique reactions. The human genome was predicted to
produce 1376 metabolites via 1809 reactions.

Our metabolomics assays detected 5971 compounds,
of which only 1018 (17%) could be putatively annotated
with KEGG compound identifiers via a database search
and based on match of measured m/z to KEGG com-
pound mass within 10 ppm. Further, only 471 (6%) of
the 5971 detected compounds were associated with a re-
action in KEGG (Additional file 1: Table S1). Of these
471 annotated compounds in the plasma metabolome
with associated KEGG reactions, 189 were predicted to
be produced by enzymes in either human or stool bac-
terial genomes as follows: 40 compounds were exclu-
sively produced by bacteria, 58 exclusively by the host,
and 91 by either human or bacterial enzymes (Fig. 2b;
Additional file 2: Table S2). There were a remaining 282
compounds that had KEGG compound IDs associated
with at least one reaction but were not predicted to be
from the human or the gut microbiome. These may be
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1) from the environment, 2) produced by microbes in
other body sites, 3) host or gut microbial products from
unannotated genes, 4) artifacts derived from metabolite
decompositions in the samples and/or are mis-
annotations via the matching based on m/z alone.

We used AMON to assess enrichment of pathways
in the detected human and bacterial metabolites using
the hypergeometric test (Fig. 3a; Additional file 3:
Table S3). The 40 compounds predicted to be pro-
duced by stool bacteria and not the host were enriched
in xenobiotic degradation pathways, including nitroto-
luene and atrazine degradation, and pathways for
amino acids metabolism, including the phenylalanine,
tyrosine and tryptophan biosynthesis pathway and the
cysteine and methionine metabolism pathway. The me-
tabolite origin data was visualized using KEGG mapper
for the phenylalanine, tyrosine and tryptophan biosyn-
thesis pathway (Fig. 3b). This tool helps to visualize
the host-microbe co-metabolism and which genes are
important for compounds that may have come from
multiple sources. For instance, Fig. 3b allows us to see
that indole is a compound found in our metabolome
that could only have been produced by bacterial me-
tabolism via the highlighted enzyme (K01695, trypto-
phan synthase). Also, tyrosine is a compound found in
our metabolome that could have been synthesized by a
variety of enzymes found only in bacteria, only in
humans, or in both and so further exploration would
be needed to understand origins of this compound.
The 58 compounds which were detected and predicted
to be produced by the human genome were enriched
in pathways that include bile secretion, steroid hor-
mone biosynthesis and gastric acid secretion.

Comparison of AMON with MIMOSA

The functionality of AMON is related to that of
another tool called MIMOSA [6], in that MIMOSA
also uses PICRUSt and KEGG to integrate microbiome
(16S rRNA) and metabolome data. Unlike AMON,
MIMOSA does not relate contributions of microbial
versus host metabolism. However, MIMOSA deter-
mines quantitative relationships between the relative
abundance of genes in a metagenome and the abun-
dance of the particular compounds in a metabolome
that their gene products produce/degrade. To compare
the results of AMON and MIMOSA when applied to
the same dataset, we analyzed our HIV case study with
MIMOSA (Additional file 4: Table S4). We supplied
MIMOSA with 1) a table of compound abundances
measured in our HIV samples with untargeted LC/MS,
2) a gene abundance and gene contributions file gener-
ated using 16S rRNA data and PICRUSt and 3) a
reaction_mapformula.lst file downloaded from KEGG
in January 2015. Of 1018 compounds with KEGG
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annotations, MIMOSA was able to successfully analyze
the potential microbe contributions for 57 different
compounds, and of these 10 (17.5%) had significant
correlations to metabolic potential scores and were
thus considered “well-predicted”. In contrast, AMON
predicted 135 compounds in the plasma metabolome
to have derived either exclusively from the microbiome
(n =40) or from the microbiome or host (n =91). Me-
tabolites that AMON predicted to be of exclusive mi-
crobial (but not host) origin that MIMOSA was unable
to analyze included important microbially-produced
signaling molecules such as indole [32, 33], butyrate
[34], D-alanine [35], and known microbial metabolites
of dietary components such as 4-hydroxybenzoic acid
[36] and diacetyl [37].

Of the 57 metabolites analyzed by MIMOSA, only 22
were predicted to be of bacterial origin by AMON. Some
compounds analyzed by MIMOSA that were not pre-
dicted by AMON to be of microbial origin were sub-
strates and not products in microbial reactions. This
reflects the different goals of the programs to predict
metabolite origins (AMON) versus metabolite turnover
that may be influenced by production or degradation
(MIMOSA). Three compounds that AMON determined
that the host and the microbiome could produce were
well-predicted by MIMOSA. These included biliverdin
(C00500) and cell membrane components phosphatidyl-
ethanolamine (C00350) and 1-Acyl-sn-glycero-3-phos-
phocholine (C04230).

Discussion

Taken together, these analyses show that AMON can be
used to predict the putative origin of compounds de-
tected in a complex metabolome. Our case study shows
the specific application of predicting origins of plasma
compounds as being from the fecal microbiome versus
the host. However, this tool can be used to compare any
number of different sources — e.g. from the microbiomes
of different body sites or compounds that may come dir-
ectly from plants consumed in the diet. Also, the outputs
of AMON can be used in conjunction with lists of me-
tabolites that were determined to significantly differ with
disease state or correlate with other host phenotypes to
predict origins of metabolites of interest.

AMON uses the latest updates of KEGG while not re-
quiring the user to purchase a KEGG license, by using
either user supplied files for those with a license or the
KEGG API which is freely available. However, we do
note that the KEGG API option is comparatively slow
and limits the maximum dataset size (due to limits of
the KEGG API). AMON is built to be flexible to the
methods used to obtain the list of KOs present in each
source sample and compounds present in a metabolome.
Although our example uses PICRUSt to predict
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compounds of bacterial origin using 16S rRNA se-
quence data, AMON requires a list of KEGG Orthol-
ogy identifiers as input and so could also be used with
shotgun sequencing data. This can allow for a more
thorough interrogation of host microbiomes that ac-
count for strain level variation in genome content and
opens its application to environments with less under-
stood genomes.

The pathway enrichment of compounds predicted to
be unique to the gut microbiome and the host provide a
level of validation for AMON results. The pathways
enriched with compounds predicted to only be from mi-
crobes are consistent with known roles for gut bacteria
in degrading various xenobiotics [38—42] and for influ-
encing amino acid [43, 44] and vitamin metabolism [45].
Likewise, the pathways enriched with compounds pre-
dicted to be human only include host processes such as
taste transduction and bile secretion. Further, since the
microbial community measured was from the human
gut and the metabolome from plasma, these results sug-
gest that these may represent microbial metabolites that
have translocated from the gut into systemic circulation,
although validation of the identity of these compounds
with authentic standards would be needed to confirm
these results. Several studies that have shown a strong
influence of the gut microbiome on the plasma metabo-
lome (reviewed in [4]) and the gut microbiome has been
linked with many diseases that occur outside of the gut.
Examples include interactions between the gut and brain
via microbially derived compounds such as serotonin
[44], and branched chain amino acids from the gut
microbiome as a contributor to insulin resistance [2].

The most similar tool to AMON is MIMOSA [6].
While AMON’s goal is to predict whether a compound
could have been produced by community of bacteria
versus the host, MIMOSA is a relatively quantitative
tool that produces information on which particular
microbes may influence which particular microbial
metabolite levels, and considers both productive and
consumptive relationships in these calculations. Unlike
AMON, MIMOSA does not incorporate knowledge of
host metabolism.

AMON designated many more compounds in the
plasma metabolome of being of potential microbial
origin compared to MIMOSA when run on the same
dataset, and these included important microbially-
produced signaling molecules such as indole [32, 33].
One potential reason for this may be more strict criteria
needed for forming a metabolic potential score in MI-
MOSA, as they note in their paper that roughly 50% of
metabolites in each data set could not be scored [6].
However, another source of this difference may be the
KEGG source file used to define reactions. AMON uses
the “reaction” file provided by KEGG which details all
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reactions in the KEGG database and MIMOSA uses the
“reaction_mapformula.lst” file, which also gives pathway
specific information for each reaction (although MI-
MOSA does not currently use this additional informa-
tion). We chose to use the “reaction” file of KEGG
because it contains information for more reactions than
the reaction_mapformula.lst file (e.g. 11,196 versus 7420
for files downloaded on June 9, 2019). The PRMT algo-
rithm used by MIMOSA also makes many assumptions
to perform a quantitative analysis that AMON does not,
including that that relative abundance of genes for a
unique enzyme function reflects levels of expressed
functional proteins and reaction rates. Although the
PRMT algorithm generally and MIMOSA specifically
have been shown to provide strong correlations between
microbiome functionality and metabolites and biological
insights [6, 17], these weaknesses indicate that the
broader information of microbe produced metabolites
that is not reliant on this quantitative information that
AMON produces is also valuable.

However, for compounds that were evaluated by
both MIMOSA and AMON, using the two tools to-
gether provided interesting and complimentary in-
sights. In particular, 3 compounds that AMON
determined that both the host and the microbiome
could produce were well-predicted by MIMOSA, sup-
porting that gut microbe metabolism is an important
driver of levels of these compounds despite the ability
of the host to produce them. One of these is biliverdin,
which is produced by macrophages during heme catab-
olism but also produced by heme oxygenenases
encoded by a variety of bacteria that utilize heme as a
source of iron [46]. The other two were lipids that are
common components of bacterial cell membranes,
supporting that cellular components of bacteria shape
the plasma metabolome.

Our analysis also highlights limitations of these ap-
proaches that use functional databases such as KEGG
due to issues with annotation of both metabolites and
the enzymes that may produce them. Overall, it is strik-
ing that of 5971 compounds in the LC/MS data, only
471 could be linked to enzymatic reactions in KEGG.
For example the human genome is known to contain
approximately 20,000 genes [47]; however, there are only
7286 KOs annotated in KEGG. These KOs only predict
the creation of 1376 unique compounds while the
Human Metabolome Database 4.0 contains 114,100 [48].
Part of this discrepancy is because multiple species of
lipids are, generally, reduced to a single compound in
KEGG. For example, while KEGG includes a single
phosphatidylcholine (PC) lipid molecule in the glycero-
phospholipid pathway, in fact, there are over 1000 spe-
cies of PCs. It is also important to note that metabolite
annotations are based on peak masses and isotope ratios,

Page 8 of 11

which can often represent multiple compounds and/or
in-source fragments; our confidence in the identity of
these compounds is only moderate. As with any metabo-
lomics dataset, we caution the user to limit their bio-
logical conclusions when level 3 annotations are used in
downstream applications such as AMON. As it is not
feasible to verify compound identities using authentic
standards or MS/MS for hundreds of compounds,
AMON provides a valuable tool for prioritizing com-
pounds for additional analysis, including identification
using authentic standards, by providing information on
their potential origins.

The limitations are more stark for complex microbial
communities, where there are fewer genes of known
function. Because of these gaps in our knowledge of
metabolite production, efforts to identify microbially
produced metabolites that affect disease should also use
methods that are agnostic to these knowledge-bases.
These include techniques such as 1) identifying highly
correlated microbes and metabolites to identify potential
productive/consumptive relationships that can be further
validated 2) molecular networking approaches which
take advantage of tandem mass spectroscopy data to
annotate compounds based on similarity to known com-
pounds with related tandem mass spectrometry (MS/
MS) profiles [49] or 3) coupling LC/MS runs with data
from germ-free versus colonized animals [1, 50, 51] or
antibiotic versus non-antibiotic treated humans [52, 53].
Because AMON takes only KO identifiers and can pull
database information from the KEGG APl or user
provided KEGG files, our tool will become increasingly
useful with improvements from KEGG as well as other
parts of the annotation process. In addition, AMON can
also accept metabolomics datasets with Level 1 identifi-
cations; i.e. where the identity of the compounds has
been verified with authentic standards.

Although our application is specifically designed to
work with the KEGG database, similar logic could be
used for other databases such as MetaCyc [54]. Our tool
also does not apply methods such as gap-filling [7, 55]
and metabolic modeling [12, 57] in its estimates. The
goal is not to produce precise measurements of the con-
tributions of the microbiome and host to the abundance
of a metabolite. Rather, AMON is designed to annotate
metabolomics results to give the user an understanding
of whether specific metabolites could have been pro-
duced directly by the host or microbial communities. If
a metabolite is identified by AMON as being of micro-
bial origin and is associated with a phenotype, this result
should motivate the researcher to perform follow up
studies. These can include confirming the identity of the
metabolite, via methods such as tandem mass spectrom-
etry, and performing experiments to confirm the ability
of microbes of interest to produce the metabolite.
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AMON also does not account for co-metabolism
between the host and microbes. An example of this is
the production of TMAO from dietary choline. Our tool
would list TMAO as a host compound and its precursor
trimethylamine (TMA) as a microbiome derived com-
pound but would not indicate that TMAO could overall
not be produced from dietary substrates unless a micro-
biome was present. Further inspection of metabolic
networks, which is enabled by AMON'’s functionality in
producing outputs for visualization in KEGG mapper
may be needed to decipher these co-metabolism rela-
tionships. Previously described methods for constructing
possible biotransformation pathways, while discriminat-
ing between microbiota and host reactions [15] could
also be incorporated into AMON in the future.

Conclusions

When researchers are seeking to integrate microbiome
and metabolome data, identifying the origin of metabo-
lites measured is an obvious route. AMON facilitates the
annotation of metabolomics data by tagging compounds
with their potential origin, either as bacteria or host.
This allows researchers to develop hypotheses about the
metabolic involvement of microbes in disease.
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